EECS 4415

Big Data Systems

Storing, managing, and processing datasets are foundational to both computer science and data science. The enormous size of today's data sets and the specific requirements of modern applications, necessitated the growth of a new generation of data management systems, where the emphasis is put on distributed and fault-tolerant processing. New programming paradigms have evolved, an abundance of information platforms offering data management and analysis solutions appeared and a number of novel methods and tools have been developed. This course introduces the fundamentals of big data storage, retrieval, and processing systems. As these fundamentals are introduced, exemplary technologies are used to illustrate how big data systems can leverage very large data sets that become available through multiple sources and are characterized by diverse levels of volume (terabytes; billion records), velocity (batch; real-time; streaming) and variety (structured; semi-structured; unstructured). The course aims to provide students with both theoretical knowledge and practical experience of the field by covering recent research on big data systems and their basic properties. Students consider both small and large datasets because both are equally important and justify different trade-offs. Topics include: software frameworks for distributed storage and processing of very large data sets, MapReduce programming model, querying of structured data sets, column stores, key-value stores, document stores, graph databases, distributed stream processing frameworks.

Avatar
Hamzeh Khazaei
Assistant Professor, Electrical Engineering and Computer Science Department

My research interests include distributed systems, cloud computing, performance modeling and autonomic computing.

Related